Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 309(Pt 1): 136566, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36152837

RESUMO

This study aimed to guide future sensor studies against other pharmaceutical drugs by synthesizing Fe3O4NPs@MWCNT metallic nanoparticles (NPs). Side damage caused by excessive accumulation of tuberculosis drugs in the body can cause clots in the organs, and cause serious damage such as heart attack and respiratory failure, and threaten human life. Therefore, the development of sensors sensitive to various antibiotics in this study is important for human health. In this study, the sensitivity of Fe3O4 NPs to tuberculosis drug (rifampicin) was evaluated by catalytic reaction using bare/GCE, MWCNT/GCE, and Fe3O4NPs@MWCNT/GCE electrodes. First of all, Fe3O4 NPs were successfully synthesized for the study and MWCNT/GCE and Fe3O4 NPs@MWCNT/GCE electrodes were formed with the modification of the MWCNT support material. It was observed that the Fe3O4 NPs@MWCNT/GCE electrode gave the highest signal against the other electrodes. The morphological structure of Fe3O4 NPs was determined by various characterization techniques such as Transmission Electron Microscopy (TEM), Fourier Transmission Infrared Spectroscopy (FTIR), ultraviolet-visible (UV-Vis), and X-ray differential (XRD) and the obtained NPs were used for sensor studies, and it was observed that the current intensity increased as the scanning speed of each electrode increased in CV and DPV measurements. The average size of Fe3O4 NPs was found to be 7.32 ± 3.2 nm. Anodic current peaks occurred in the linear range of 2-25 µM. According to the results obtained from the measurements, the limit of detection (LOD) value was calculated as 0.64 µM limit of quantification (LOQ) 1.92 µM.


Assuntos
Nanopartículas Metálicas , Nanotubos de Carbono , Humanos , Nanotubos de Carbono/química , Rifampina , Técnicas Eletroquímicas/métodos , Eletrodos , Nanopartículas Metálicas/química , Antibacterianos , Preparações Farmacêuticas
2.
Food Chem Toxicol ; 165: 113075, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35487338

RESUMO

Brown HT and carmoisine, which are the most used dyestuffs in pharmaceuticals, textiles, cosmetics and foods, are important components of the Azo family. Although the Azo group is not toxic or carcinogenic under normal conditions, these dyestuffs require great care due to the reduction of the Azo functional group to amines. In particular, fast, reliable, easy, on-site and precise determinations of these substances are extremely necessary and important. In this review, the properties, applications, and electrochemical determinations of brown HT and carmoisine, which are used as synthetic food colorants, are discussed in detail. Up to now, sensor types, detection limits (LOD and LOQ), and analytical applications in the developed electrochemical strategies for both substances were compared. In addition, the validation parameters such as the variety of the sensors, sensitivity, selectivity and electrochemical technique in these studies were clarified one by one. While the electrochemical techniques recommended for brown HT were mostly used for the removal of dyestuff, for carmoisine they included fully quantitative centered studies. The percentiles of voltammetric techniques, which are the most widely used among these electroanalytical methods, were determined. The benefits of a robust electrochemical strategy for the determination of both food colors are summed up in this review. Finally, the brown HT and carmoisine suggestions for future perspectives in electrochemical strategy are given according to all their applications.


Assuntos
Corantes de Alimentos , Naftalenossulfonatos , Compostos Azo , Técnicas Eletroquímicas , Naftalenossulfonatos/química
3.
Biosens Bioelectron ; 184: 113252, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33895688

RESUMO

Potentiometric-based biosensors have the potential to advance the detection of several biological compounds and help in early diagnosis of various diseases. They belong to the portable analytical class of biosensors for monitoring biomarkers in the human body. They contain ion-sensitive membranes sensors can be used to determine potassium, sodium, and chloride ions activity while being used as a biomarker to gauge human health. The potentiometric based ion-sensitive membrane systems can be coupled with various techniques to create a sensitive tool for the fast and early detection of cancer biomarkers and other critical biological compounds. This paper discusses the application of potentiometric-based biosensors and classifies them into four major categories: photoelectrochemical potentiometric biomarkers, potentiometric biosensors amplified with molecular imprinted polymer systems, wearable potentiometric biomarkers and light-addressable potentiometric biosensors. This review demonstrated the development of several innovative biosensor-based techniques that could potentially provide reliable tools to test biomarkers. Some challenges however remain, but these can be removed by coupling techniques to maximize the testing sensitivity.


Assuntos
Técnicas Biossensoriais , Biomarcadores , Humanos , Polímeros , Potenciometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...